Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543057

RESUMO

BACKGROUND: Drug release from controlled release delivery systems is influenced by various factors, including the polymer's grade and the drug's hydration form. This study aimed to investigate the impact of these factors on the controlled release of theophylline (THN). This research compares the monohydrate form found in branded products with the anhydrous form in generic equivalents, each formulated with different polymer grades. METHODS: Quality control assessment was conducted alongside in vitro evaluation, complemented by various analytical techniques such as X-ray diffraction (XRD) and scanning electron microscopy (SEM). Additionally, thermal analyses using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were employed. RESULTS: Quality control assessments demonstrated that the generic tablets exhibited lower average weight and resistance force compared to the branded ones. In vitro tests revealed that generic tablets released contents within 120 min, compared to 720 min for the branded counterpart. Characterization using XRD and SEM identified disparities in crystallinity and particle distribution between the three samples. Additionally, the thermal analysis indicated consistent endothermic peaks across all samples, albeit with minor variations in heat flow and decomposition temperatures between the two products. CONCLUSIONS: This study demonstrated that variations in polymer grade and hydration form significantly impact THN release.

2.
ACS Omega ; 9(7): 8574-8584, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405454

RESUMO

Comprehending the nitrogen combustion chemistry during the thermal treatment of biomass demands acquiring a detailed mechanism for reaction pathways that dictate the degradation of amino acids. Serine (Ser) is an important α-amino acid that invariably exists in various categories of biomass, most notably algae. Based on density functional theory (DFT) coupled with kinetic modeling, this study presents a mechanistic overview of reactions that govern the fragmentation of the Ser compound in the gas phase as well as in the crystalline form. Thermokinetic parameters are computed for a large set of reactions and involved species. The initial decomposition of Ser is solely controlled by a dehydration channel that leads to the formation of a 2-aminoacrylic acid molecule. Decarboxylation and deamination routes are likely to be of negligible importance. The falloff window of the dehydration channel extends until the atmospheric pressure. Bimolecular reactions between two Ser compounds simulate the widely discussed cross-linking reactions that prevail in the condensed medium. It is demonstrated that the formation of the key experimentally observed products (NH3, CO2, and CO) may originate from direct bond fissions in the melted phase of Ser prior to evaporation. A constructed kinetic model (with 24 reactions) accounts for the primary steps in the degradation of the Ser molecule in the gas phase. These steps include dehydration, decarboxylation, deamination, and others. The kinetic model presents an onset decomposition temperature of 700 K with the complete conversion attained at ∼1090 K. Likewise, the model portrays the temperature-dependent increasing yields of CO2 and NH3. The results presented in this work offer a detailed analysis of the intricate chemical processes involved in nitrogen transformations, specifically in relation to amino acids. Amino acids play a crucial role as the primary nitrogen carriers in biomass, such as microalgae and protein-rich biomass.

3.
Environ Pollut ; 346: 123645, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402939

RESUMO

Brominated flame retardants (BFRs) are bromine-bearing additives added to the polymeric fraction in various applications to impede fire ignition. The Stockholm Convention and various other legislations abolished legacy BFRs usage and hence, the so-called novel BFRs (NBFRs) were introduced into the market. Recent studies spotlighted their existence in household dust, aquifers and aquatic/aerial species. Co-pyrolysis of BFRs with metal oxides has emerged as a potent chemical recycling approach that produces a bromine-free stream of hydrocarbon. Herein, we investigate the debromination of two prominent two NBFRs; namely tetrabromobisphenol A 2,3-dibromopropyl ether (TD) and tetrabromobisphenol A diallyl ether (TAE) through their co-pyrolysis with zinc oxide (ZnO) and franklinite (ZnFe2O4). Most of the zinc content in electrical arc furnace dust (EAFD) exists in the form of these two metal oxides. Conversion of these metal oxides into their respective bromides could also assist in the selective extraction of the valuable zinc content in EAFD. The debromination potential of both oxides was unveiled via a multitude of characterization studies to analyze products (char, gas and condensates). The thermogravimetric analysis suggested a pyrolytic run up to 500 °C and the TAE treatment with ZnO produced only a trivial amount of brominated compounds (relative area, 0.83%). Phenol was the sole common compound in condensable products; potentially formed by the ß-scission debromination reaction from the parental molecular skeleton. Inorganic compounds and methane were the major constituents in the gaseous products. The pyrochar analyses confirmed the presence of metal bromides retained in the residue, averting the bromine release into the atmosphere. The ion chromatography analysis portrayed <8% of HBr gas release into the atmosphere upon pyrolysis with ZnO. The ZnO dominance herein envisaged further probes into other spinel ferrites in combating brominated polymers.


Assuntos
Resíduo Eletrônico , Retardadores de Chama , Hidrocarbonetos Bromados , Bifenil Polibromatos , Óxido de Zinco , Retardadores de Chama/análise , Resíduo Eletrônico/análise , Bromo , Brometos , Reciclagem/métodos , Polímeros , Zinco/análise , Poeira , Éteres , Hidrocarbonetos Bromados/análise
4.
Chemphyschem ; 25(3): e202300665, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37983906

RESUMO

The M06-2X/6-311++G(d,p) level of theory was used to examine the degradation of Trichlorofluoroethene (TCFE) initiated by OH⋅ radicals. Additionally, the coupled-cluster single-double with triple perturbative [CCSD(T)] method was employed to refine the single-point energies using the complete basis set extrapolation approach. The results indicated that OH-addition is the dominant pathway. OH⋅ adds to both the C1 and C2 carbons, resulting in the formation of the C(OH)Cl2 -⋅CClF and ⋅CCl2 -C(OH)ClF species. The associated barrier heights were determined to be 1.11 and -0.99 kcal mol-1 , respectively. Furthermore, the energetic and thermodynamic parameters show that pathway 1 exhibits greater exothermicity and exergonicity compared to pathway 2, with differences of 8.11 and 8.21 kcal mol-1 , correspondingly. The primary pathway involves OH addition to the C2 position, with a rate constant of 6.2×10-13 cm3 molecule-1 sec-1 at 298 K. This analysis served to estimate the atmospheric lifetime, along with the photochemical ozone creation potential (POCP) and ozone depletion potential (ODP). It yielded an atmospheric lifetime of 8.49 days, an ODP of 4.8×10-4 , and a POCP value of 2.99, respectively. Radiative forcing efficiencies were also estimated at the M06-2X/6-311++G(d,p) level. Global warming potentials (GWPs) were calculated for 20, 100, and 500 years, resulting in values of 9.61, 2.61, and 0.74, respectively. TCFE is not expected to make a significant contribution to the radiative forcing of climate change. The results obtained from the time-dependent density functional theory (TDDFT) indicated that TCFE and its energized adducts are unable to photolysis under sunlight in the UV and visible spectrum. Secondary reactions involve the [TCFE-OH-O2 ]⋅ peroxy radical, leading subsequently to the [TCFE-OH-O]⋅ alkoxy radical. It was found that the alkoxy radical resulting from the peroxy radical can lead to the formation of phosgene (COCl2 ) and carbonyl chloride fluoride (CClFO), with phosgene being the primary product.

5.
ACS Omega ; 8(45): 43254-43270, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024703

RESUMO

The release of bromine-free hydrocarbons and gases is a major challenge faced in the thermal recycling of e-waste due to the corrosive effects of produced HBr. Metal oxides such as Fe2O3 (hematite) are excellent debrominating agents, and they are copyrolyzed along with tetrabromophenol (TBP), a lesser used brominated flame retardant that is a constituent of printed circuit boards in electronic equipment. The pyrolytic (N2) and oxidative (O2) decomposition of TBP with Fe2O3 has been previously investigated with thermogravimetric analysis (TGA) at four different heating rates of 5, 10, 15, and 20 °C/min, and the mass loss data between room temperature and 800 °C were reported. The objective of our paper is to study the effectiveness of machine learning (ML) techniques to reproduce these TGA data so that the use of the instrument can be eliminated to enhance the potential of online monitoring of copyrolysis in e-waste treatment. This will reduce experimental and human errors as well as improve process time significantly. TGA data are both nonlinear and multidimensional, and hence, nonlinear regression techniques such as random forest (RF) and gradient boosting regression (GBR) showed the highest prediction accuracies of 0.999 and lowest prediction errors among all the ML models employed in this work. The large data sets allowed us to explore three different scenarios of model training and validation, where the number of training samples were varied from 10,000 to 40,000 for both TBP and TBP + hematite samples under N2 (pyrolysis) and O2 (combustion) environments. The novelty of our study is that ML techniques have not been employed for the copyrolysis of these compounds, while the significance is the excellent potential of enhanced online monitoring of e-waste treatment and extension to other characterization techniques such as spectroscopy and chromatography. Lastly, e-waste recycling could greatly benefit from ML applications since it has the potential to reduce total and operational costs and improve overall process time and efficiency, thereby encouraging more treatment plants to adopt these techniques, resulting in reducing the increasing environmental footprint of e-waste.

6.
RSC Adv ; 13(43): 30346-30357, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37849705

RESUMO

Hexagonal boron nitride (h-BN) has been widely utilized in various strategic applications. Fine-tuning properties of BN towards the desired application often involves ad-atom adsorption of modifying its geometries through creating surface defects. This work utilizes accurate DFT computations to investigate adsorption of selected 1st and 2nd row elements (H, Li, C, O, Al, Si, P, S) of the periodic table on various structural geometries of BN. The underlying aim is to assess the change in key electronic properties upon the adsorption process. In addition to the pristine BN, B and N vacancies were comprehensively considered and a large array of properties (i.e., atomic charges, adsorption energies, density of states) were computed and contrasted among the eight elements. For instance, we found that the band gap to vary between 0.33 eV (in case of Li) and 4.14 eV (in case of P). Likewise, we have illustrated that magnetic contribution to differ substantially depending on the adatom adsorbents. Results from this work has also lays a theoretical foundation for the use of decorated and defected BN as a chemical sensor for CO gases.

7.
Environ Sci Pollut Res Int ; 30(43): 98300-98313, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37606772

RESUMO

Legacy brominated flame retardants (BFRs) in printed circuit boards are gradually being replaced by novel BFRs (NBFRs). Safe disposal and recycling of polymeric constituents in the polymeric fractions of e-waste necessitate the removal of their toxic and corrosive bromine content. This is currently acquired through thermal recycling operations involving the pyrolysis of BFRs-containing materials with metal oxides. Nonetheless, the debromination capacity toward NBFRs is yet to be established. Thus, this study aims to address these two crucial gaps in the current knowledge pertaining to the plausible formation of brominated toxicants from the thermal decomposition of NBFRs and their thermal recycling potential. Herein, we investigate the pyrolysis of a mixture of 2,4,6-tribromophenol (TBP), allyl 2,4,6-tribromophenyl ether (ATE) and Tetrabromobisphenol A-bis (2,3-dibromo propyl ether) (TBBPA-DBPE) in the presence of acrylonitrile butadiene styrene (ABS) polymers at various loads. To demonstrate a viable debromination route, pyrolysis of NBFRs-ABS mixture with Ca(OH)2 was also investigated. The latter is a potent debromination agent for legacy BFRs. Upon pyrolysis with Ca(OH)2, the bromine content in the collected oil was reduced up to 80.49% between 25-500 °C. Products of the co-pyrolysis process generally feature non-brominated aromatic and aliphatic compounds; a finding that indicates an effective thermal recycling approach. As evident by IC measurements, no HBr emission could be detected when Ca(OH)2 is added to the mixture. As XRD patterns show, Ca(OH)2 is partially converted into CaBr2. DFT calculations provide pathways for the observed surface debromination characterized by surface-assisted fission of aromatic C-Br bonds and the formation of CaBr sites. Outcomes reported herein are instrumental to designing and operating a thermal recycling facility of polymeric materials contaminated with high loads of bromine, i.e., most notably during scenarios encountered in the thermal recycling of e-waste.


Assuntos
Acrilonitrila , Resíduo Eletrônico , Retardadores de Chama , Bromo , Polímeros , Poliestirenos
8.
Environ Sci Pollut Res Int ; 30(37): 87118-87128, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37418188

RESUMO

Allyl 2,4,6-tribromophenyl ether (TBP-AE) is a flame retardant that is added to plastics to improve their fire resistance. This kind of additive is hazardous to both human health and the environment. As any other BFRs, TBP-AE resists photo-degradation in the environment and hence materials laden with TBP-AE are to be dibrominated to avoid environmental pollution. Mechanochemical degradation of TBP-AE is a promising approach with potential industrial applications since it does not require high temperatures nor it generates any secondary pollutants. A planetary ball milling simulation experiment was designed to study TBP-AE's mechanochemical debromination. To report products from the mechanochemical process, a variety of characterization techniques were used. The characterization methods included gas chromatography-mass spectrometry (GC-MS), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) with energy-dispersive X-ray analysis (EDX). The effects of various co-milling reagent types, co-milling reagent concentrations with raw material, time, and revolution speed on mechanochemical debromination efficiency have been thoroughly investigated. The Fe/Al2O3 mixture entails the highest debromination efficiency of 23%. However, when using a Fe/Al2O3 mixture, neither the reagent concentration nor the revolution speed influenced the debromination efficiency. In case of using only Al2O3, the next viable reagent, it was revealed that while increasing the revolution, speed improved debromination efficiency to a certain point, and increasing it any further left the debromination efficiency unchanged. In addition, the results showed that an equal mass ratio of TBP-AE to Al2O3 promoted degradation more than an increase in the ratio of Al2O3 to TBP-AE. The addition of ABS polymer largely inhibits the reaction between Al2O3 and TBP-AE, which hindered alumina's ability to capture organic bromine, causing a significant decrease in the debromination efficiency when model of waste printed circuit board (WPCB) is considered.


Assuntos
Éter , Éteres Fenílicos , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Cromatografia Gasosa-Espectrometria de Massas , Etil-Éteres
9.
J Chem Inf Model ; 63(8): 2305-2320, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37036888

RESUMO

The principal objective in the treatment of e-waste is to capture the bromine released from the brominated flame retardants (BFRs) added to the polymeric constituents of printed circuits boards (PCBs) and to produce pure bromine-free hydrocarbons. Metal oxides such as calcium hydroxide (Ca(OH)2) have been shown to exhibit high debromination capacity when added to BFRs in e-waste and capturing the released HBr. Tetrabromobisphenol A (TBBA) is the most commonly utilized model compound as a representative for BFRs. Our coauthors had previously studied the pyrolytic and oxidative decomposition of the TBBA:Ca(OH)2 mixture at four different heating rates, 5, 10, 15, and 20 °C/min, using a thermogravimetric (TGA) analyzer and reported the mass loss data between room temperature and 800 °C. However, in the current work, we applied different machine learning (ML) and chemometric techniques involving regression models to predict the TGA data at different heating rates. The motivation of this work was to reproduce the TGA data with high accuracy in order to eliminate the physical need of the instrument itself, so that this could save significant experimental time involving sample preparation and subsequently minimizing human errors. The novelty of our work lies in the application of ML techniques to predict the TGA data from e-waste pyrolysis since this has not been conducted previously. The significance of our work lies in the fact that e-waste is ever increasing, and predicting the mass loss curves faster will enable better compositional analysis of the e-waste samples in the industry. Three ML models were employed in our work, namely Linear, random forest (RF), and support vector regression (SVR), out of which the RF method exhibited the highest coefficient of determination (R2) of 0.999 and least error of prediction as estimated by the root mean squared error (RMSEP) at all 4 heating rates for both pyrolysis and oxidation conditions. An 80:20 split was used for calibration and validation data sets. Furthermore, for showing versatility and robustness of the best-predicting RF model, it was also trained using all the data points in the lower heating rates of 5 and 10 °C/min and predicted on all the data points for the higher heating rates of 15 and 20 °C/min to again obtain a high R2 of 0.999. The excellent performance of the RF model showed that ML techniques can be used to eliminate the physical use of TGA equipment, thus saving experimental time and potential human errors, and can further be applied in other real-time e-waste recycling scenarios.


Assuntos
Resíduo Eletrônico , Retardadores de Chama , Hidrocarbonetos Bromados , Bifenil Polibromatos , Humanos , Bromo , Resíduo Eletrônico/análise , Retardadores de Chama/análise , Hidrocarbonetos Bromados/análise , Bifenil Polibromatos/análise , Aprendizado de Máquina
10.
RSC Adv ; 13(10): 6966-6982, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36865571

RESUMO

Thermal treatment of bromine-contaminated polymers (i.e., as in e-waste) with metal oxides is currently deployed as a mainstream strategy in recycling and resources recovery from these objects. The underlying aim is to capture the bromine content and to produce pure bromine-free hydrocarbons. Bromine originates from the added brominated flame retardants (BFRs) to the polymeric fractions in printed circuits boards, where tetrabromobisphenol A (TBBA) is the most utilized BFR. Among notable deployed metal oxides is calcium hydroxide, i.e., Ca(OH)2 that often displays high debromination capacity. Comprehending thermo-kinetic parameters that account for the BFRs:Ca(OH)2 interaction is instrumental to optimize the operation at an industrial scale. Herein, we report comprehensive kinetics and thermodynamics studies into the pyrolytic and oxidative decomposition of a TBBA:Ca(OH)2 mixture at four different heating rates, 5, 10, 15, and 20 °C min-1, carried out using a thermogravimetric analyser. Fourier Transform Infrared Spectroscopy (FTIR) and a carbon, hydrogen, nitrogen, and sulphur (CHNS) elemental analyser established the vibrations of the molecules and carbon content of the sample. From the thermogravimetric analyser (TGA) data, the kinetic and thermodynamic parameters were evaluated using iso-conversional methods (KAS, FWO, and Starink), which were further validated by the Coats-Redfern method. The computed activation energies for the pyrolytic decomposition of pure TBBA and its mixture with Ca(OH)2 reside in the narrow ranges of 111.7-112.1 kJ mol-1 and 62.8-63.4 kJ mol-1, respectively (considering the various models). Obtained negative ΔS values suggest the formation of stable products. The synergic effects of the blend exhibited positive values in the low-temperature ranges (200-300 °C) due to the emission of HBr from TBBA and the solid-liquid bromination process occurring between TBBA and Ca(OH)2. From a practical point of view, data provided herein are useful in efforts that aim to fine-tune operational conditions encountered in real recycling scenarios, i.e., in co-pyrolysis of e-waste with Ca(OH)2 in rotary kilns.

11.
Environ Sci Pollut Res Int ; 30(8): 21360-21367, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36266595

RESUMO

It has been widely postulated that thermal degradation of polytetrafluoroethylene (PTFE; commercially known as Teflon) under the presence of moisture presents a likely source for the formation of the notorious perfluorocarboxylic acids (CF3(CF2)nCO(OH) PFCAs) and perfluorinated aldehydes (CF3(CF2)nCO(F/H). Thus, deployment of objects laden with Teflon at the peak of their thermal stability may contribute to the atmospheric budget of PFCAs. However, the underlying mechanism remains largely speculative. This study reports potential energy surfaces for reactions that govern oxidative transformation of n-C8F18 (as a model compound of PTFE) into tridecafluoroheptanoyl fluoride and perfluoroheptanoic acid. Central to computed pathways are dissociative addition reactions of water over the carbonyl group and elimination of hydroperoxyl radicals. Facile activation enthalpies are encountered in the involved steps. Our analysis discloses that formation of the building monomer C2F4 should be suppressed under thermolysis oxidation conditions at which synthesis of trifluoroacetic acids is preferred. Constructed kinetic model illustrates a near-complete conversion of the PTFE model compound into perfluorocarboxylic acids (CF3(CF2)nCO(OH) and perfluorinated aldehydes. Outcomes from this study should be instrumental in providing a better understanding of the likely contribution of fluoropolymers in the observed environmental loads of perfluorocarboxylic acids.


Assuntos
Fluorocarbonos , Politetrafluoretileno , Fluorocarbonos/análise , Polímeros de Fluorcarboneto/metabolismo , Ácidos , Oxirredução , Água , Ácidos Carboxílicos
12.
Waste Manag ; 154: 283-292, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36308795

RESUMO

Brominated flame retardants (BFRs) constitute a major load in the polymeric fraction of e-waste. Degradation of BFRs-laden plastics over transition metal oxides is currently deployed as a mainstream strategy in the disposal and treatment of the non-metallic segment of e-waste. However, interaction of pyrolysis's products of BFRs with transition metal oxides is well-known to facilitate the formation of notorious pollutants. Despite recent progress to comprehend the germane chemistry of this interaction, several important pertinent aspects remain to be addressed. To fill in this gap, an integrated experimental and simulation account of the pyrolytic and oxidative decomposition of a gaseous stream of 2,4,6-tribromophenol (TBP) over hematite (Fe2O3) has been reported herein. TBP is utilized as a model compounds of BFRs as their most common formulations include brominated phenolic rings. Overall, hematite entails a rather low cracking capacity under pyrolytic conditions. Analysis of condensate products indicates that oxidative degradation of a gaseous stream of TBP results mainly in the formation of brominated alkanes such as bromoethane and bromo-pentane. Likewise, Ion chromatography (IC) measurements disclosed a noticeable reduction in the concentrations of escaped HBr. Transformation of iron oxides into iron bromides (possibly in the form of FeBr2) during pyrolysis and combustion operations is evident through XRD measurements. Density functional theory (DFT) calculations map out important reactions pathways that operate in the initial degradation of the TBP molecule. From a broader perspective, outlined results shall be instrumental to precisely assess the effectiveness of using iron oxides in thermal catalytic recycling of e-waste and the likely emission of brominated toxicants.

13.
Environ Sci Pollut Res Int ; 29(20): 30126-30133, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34997481

RESUMO

Bromination mechanisms of aromatic pollutants assume a chief contribution in the observed yields and pattern's distribution of a wide array of dioxin-like toxicants. However, salient features of the governing pathways remain largely speculative. This study presents detail mechanistic insights into two commonly discussed routes; namely: surface-assisted conversion of HBr into Br2 and direct bromine transfer from oxybromides into a benzene ring. Utilizing iron surfaces, as structural representative of the metallic content in electronic wastes, results from density functional theory calculations portray accessible reactions into the successive dissociative adsorption of HBr over the Fe(100) surface and the subsequent evolution of gas phase bromine molecules. Activation energies for HBr uptake by the plain iron surface reside in the range of 129-182 kJ/mol. Over an oxygen pre-covered surface, dissociative adsorption of HBr leading to bromine molecules requires significantly lower activation energies (45-78 kJ/mol). Likewise, bromination of a benzene ring into a monobromobenzene molecule over Fe(100)_O*Br* (i.e., an oxybromide) configuration ensues with an opening activation energy of ~ 165 kJ/mol. Adsorption of a phenyl radical over an iron-oxybromide forms a phenolate moiety that subsequently desorbs from the surface into a phenoxy radical. Reaction pathways presented herein shall be useful in the ongoing efforts to comprehend the formation and bromination routes of the notorious bromine-bearing pollutants in real scenarios, such as, these encountered in the open burning and primitive thermal recycling of electronic wastes.


Assuntos
Bromo , Poluentes Ambientais , Benzeno , Bromo/química , Halogenação , Ferro
14.
Chemosphere ; 289: 133118, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34863723

RESUMO

Incineration appears as a viable strategy in the disposal of the notorious perfluoroalkyl substances (PFASs) in a process that typically leads to fluorine mineralization. Central in the design of such operation is to comprehend the underlying chemical mechanisms that dictate thermal fragmentation of PFASs into smaller perfluorinated cuts and HF. Among notable short-chain PFASs entities is the heptafluoropropylene-oxide-dimer acid (HFPO-DA, C5F11C(O)OH), commercially known as GenX synthesized as a possible replacement of other PFASs compounds. However, reaction pathways that underpin the degradation of GenX at temperatures relevant to its decomposition in incinerators (i.e., cement kilns), remain unknown. Herein, we map out all plausible initial reactions that govern the thermal decomposition of GenX. Simultaneous elimination of HF and CO2 appears as the kinetically most favored channel with an accessible activation enthalpy of ∼62.0 kcal/mol. Fission of the ether linkage in the 1,1,1,2,2,3,3-heptafluoro-3-[(1-fluoroethenyl)oxy] propane molecule (that forms after HF/CO2 elimination) affords a wide array of CnFm cuts, most notably CF2 at elevated temperatures. Constructed kinetic model plots temperature-dependent profiles of important species. It is predicted that GenX to commence decomposition around 700 K at a residence time of 2.0 s, a value that is generally applied in incinerators. Findings from the study call to further investigate interactions between the predicted major fluorine carriers (HF and CF2) and other constituents encountered in relevant incineration mediums, most notably, calcium hydroxides and polymeric materials.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Flúor , Fluorocarbonos/análise , Incineração , Óxidos , Poluentes Químicos da Água/análise
15.
Waste Manag ; 137: 283-293, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34823135

RESUMO

The effectiveness of a recycling approach of the printed circuit board (PCBs), and, thus, the quality of polymeric constituents, primarily rests on the capacity to eliminate the bromine content (mainly as HBr). HBr is emitted in appreciable quantities during thermal decomposition of PCB-contained brominated flame retardants (BFRs). The highly corrosive, yet relatively reactive HBr, renders recovery of bromine-free hydrocarbons streams from brominated polymers in PCBs very challenging. Via combined experimental and theoretical frameworks, this study explores the potential of deploying alumina (Al2O3) as a debromination agent of Br-containing hydrocarbon fractions in PCBs. A consensus from a wide array of characterization techniques utilized herein (ICP-OES, IC, XRD, FTIR, SEM-EDX, and TGA) clearly demonstrates the transformation of alumina upon its co-pyrolysis with the non-metallic fractions of PCBs, into aluminum bromides and oxy-bromides. ICP-OES measurements disclose the presence of high concentration of Cu in the non-metallic fraction of PCB, along with minor levels of selected valuable metals. Likewise, elemental ionic analysis by IC demonstrates an elevated concentration of bromine in washed alumina-PCBs pyrolysates, especially at 500 °C. The Coats-Redfern model facilitates the derivation of thermo-kinetic parameters underpinning the thermal degradation of alumina-PCB mixtures. Density functional theory calculations (DFT) establish an accessible reaction pathway for the HBr uptake by the alumina surface, thus elucidating chemical reactions governing the observed alumina debromination activity. Findings from this study illustrate the capacity of alumina as a HBr fixation agent during the thermal treatment of e-waste.


Assuntos
Resíduo Eletrônico , Retardadores de Chama , Óxido de Alumínio , Bromo , Resíduo Eletrônico/análise , Pirólise , Reciclagem
16.
Chemosphere ; 290: 133367, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34933028

RESUMO

Brominated polycyclic aromatic hydrocarbons (BrPAHs) have been consistently detected in various environmental matrices, and measured at alarming rates in stack emissions. However, formation mechanisms and bromination patterns of BrPAHs remain unclear. This contribution constructs detailed mechanistic pathways for the synthesis of selected BrPAHs (namely bromine-bearing naphthalene, acenaphthylene, anthracene, and phenanthrene). Mapped-out pathways follow the Bittner-Howard's route in the hydrogen abstraction acetylene addition (HACA) mechanism, in which a second C2HBr molecule is added to the first one. Constructed kinetic model portrays temperature-dependent profiles of major and minor species. Direct loss of an H atom from the acetylenic fragment appears to be more important at elevated temperatures, when compared with further addition of C2HBr cuts or ring-cyclization reactions. The occurrence of closed-shell Diels-Alder pathway should be inhibited owing to sizable enthalpic barriers. Fukui Indices for electrophilic substitutions (f-1) establish bromination' s pattern of selected BrPAHs. The diradical character of BrPAHs coupled with electron-deficient C(Br) sites, render BrPAHs as potent precursors for the formation of environmentally persistent free radicals (EPFRs). Findings reported herein shall be useful in comprehending the formation chemistry of BrPAHs, a less-investigated category of toxicants in thermal systems.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Bromo , Halogenação
17.
J Hazard Mater ; 422: 126879, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34411962

RESUMO

Literature provides detailed mechanisms underpinning the formation of a wide array of bromine (Br)-containing molecules with a prime focus on dioxin-like compounds. However, from a more applied point of view, the practical deployment of attained thermo-kinetic parameters remains inadequate in the absence of a robust kinetic model that connects bromine transformation at the molecular level with pertinent experimental observations. Herein and to fill in this gap, this study constructs a chemical kinetic model to account for the "homogenous gas phase" emission of Br-aromatic pollutants from the oxidative thermal decomposition of a monobromobenzene molecule (MBZ). The latter serves as a model compound for brominated flame retardants (BFRs) present in e-waste. The model consists of sub-mechanisms (that include reaction rate constants and thermochemical T-dependent functions) for HBr oxidation, combustion mechanism of C1-C6 species, bromine transformation, and synthesis of Br dioxin-like compounds. Reaction rate parameters were obtained for a large array of reactions that constitute the core of the model. For instance, the obtained activation energies for the initial pathways in the formation of brominated biphenyls reside in the range of ~15-45 kJ/mol. Considering oxidation of 5000 ppm MBZ in a plug flow reactor, the model reasonably predicts the temperature-dependent profiles (between 500 and 1200 °C at atmospheric pressure) of a few PBDD/Fs (i.e., polybrominated dibenzo-p-dioxins) isomers in reference to limited corresponding experimental measurements. Most Br dioxin-like compounds appear in the narrow temperature window of 600-1000 °C and achieve their highest abundance at molar yields in the range of 1.0-15 mmol/mol MBZ. A high load (100-120 mmol/mol MBZ) of brominated environmentally persistent free radicals (Br-EPFR) emerges and shifts from bromophenoxy radicals to bromocyclopentadienyl radicals around 700 °C. Oxidation of a 2-bromophenol molecule results in the formation of higher yields of Br-toxicants when compared with that of MBZ. The assembled model provides an informed hazards assessment into the potential emission inventories of Br-compounds in the gas phase at conditions encountered in real scenarios, such as open burning and primitive treatment of e-waste. Via an atomic-base understanding of the complex bromine chemistry and speciation, the model allows the underlying operational conditions that reduce the emission of Br-notorious pollutants to be surveyed and fine-tuned.


Assuntos
Dioxinas , Retardadores de Chama , Bifenil Polibromatos , Bromo , Dioxinas/toxicidade , Retardadores de Chama/toxicidade , Temperatura
18.
Chemosphere ; 286(Pt 2): 131685, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34388878

RESUMO

Thermal decomposition of high-fluorine content PFAS streams for the disposal of old generations of concentrates of firefighting foams, exhausted ion-exchanged resins and granular activated carbon, constitutes the preferred method for destruction of these materials. This contribution studies the thermal transformation of perfluoropentanoic acid (C4F9C(O)OH, PFPA), as a model PFAS species, in gas-phase reactions over broad ranges of temperature and residence time, which characterise incinerators and cement kilns. Our focus is only on gas-phase reactions, to formulate a gas-phase submodel that, in future, could be used in comprehensive simulation of thermal destruction of PFAS; such comprehensive models will need to comprise fluorine mineralisation on flyash and in clinker material. Our submodel consists of 56 reactions and 45 species, and includes new pathways that cover the initial decomposition channels of PFPA, including those that lead to the formation of the n-C4F9 radical, the abstraction of hydroxyl H by O/H radicals, the fragmentation of the n-C4F9 radical, reactions between HF and perfluoropentanoic acid, as well as between HF and heptafluorobutanoyl fluoride (C3F7COF), and the cyclisation reactions. The model illustrates the formation of a wide spectrum of small CnFm and CnHFm compounds in the temperature window of 800-1500 K, 2 and 25 s residence time in a plug flow reactor, providing theoretical estimates for the operating conditions of PFAS thermal destruction systems. The initiation reactions involve the loss of HF and formation of the transition α-lactone species that converts to C3F7COF, with C4F9C(O)OH completely decomposed at 1020 K for 2 s residence time. At 1500 K, we predict the emission of ꞉CF2 (biradical difluorocarbene), HF, CO2, CO, CF4, C2F6, and C2F4, but at < 1400 K, we note the formation of 1H-nonafluorobutane (C4HF9), phosgene (COF2), and heptafluorobutanoyl fluoride (C3F7COF), with 1-C4F8, 2-C4F8 and C3HF7 persisting to 1500 K. We demonstrate that, the gas-phase pyrolysis processes by themselves convert PFAS to HF and short-chain fluorocarbons, with similar product distribution for short (2 s) and long (25 s) residence times, as long as the treatment temperature exceeds 1500 K. These residence times reflect those encountered in incinerators and cement kilns, respectively. Thermokinetic and mechanistic insights revealed herein shall assist to innovate PFAS thermal disposal technologies, and, from a fundamental perspective, to accelerate research progress in modelling of gas/solid reactions that mineralise PFAS-derived fluorine.


Assuntos
Fluorocarbonos , Ácidos Carboxílicos , Carvão Vegetal , Incineração , Cinética
19.
Molecules ; 26(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34770889

RESUMO

Rare earth metal oxides (REMOs) have gained considerable attention in recent years owing to their distinctive properties and potential applications in electronic devices and catalysts. Particularly, cerium dioxide (CeO2), also known as ceria, has emerged as an interesting material in a wide variety of industrial, technological, and medical applications. Ceria can be synthesized with various morphologies, including rods, cubes, wires, tubes, and spheres. This comprehensive review offers valuable perceptions into the crystal structure, fundamental properties, and reaction mechanisms that govern the well-established surface-assisted reactions over ceria. The activity, selectivity, and stability of ceria, either as a stand-alone catalyst or as supports for other metals, are frequently ascribed to its strong interactions with the adsorbates and its facile redox cycle. Doping of ceria with transition metals is a common strategy to modify the characteristics and to fine-tune its reactive properties. DFT-derived chemical mechanisms are surveyed and presented in light of pertinent experimental findings. Finally, the effect of surface termination on catalysis by ceria is also highlighted.

20.
Chemosphere ; 280: 130621, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33964746

RESUMO

Brominated benzenes and phenols constitute direct precursors in the formation of bromine-bearing pollutants; most notably PBDD/Fs and other dioxin-type compounds. Elucidating accurate mechanisms and constructing robust kinetic models for the oxidative transformation of bromobenzenes and bromophenols into notorious Br-toxicants entail a comprehensive understanding of their initial oxidation steps. However, pertinent mechanistic studies, based on quantum chemical calculations, have only focused on secondary condensation reactions into PBDD/Fs and PBDEs. Literature provide kinetic parameters for these significant reactions, nonetheless, without attempting to compile the acquired Arrhenius coefficients into kinetic models. To fill in this gap, this study sets out to illustrate primary chemical phenomena underpinning the low-temperature combustion of a monobromobenzene molecule (MBZ) based on a detail chemical kinetic model. The main aim is to map out temperature-dependent profiles for major intermediates and products. The constructed kinetic model encompasses several sub-mechanisms (i.e, HBr and benzene oxidation, bromination of phenoxy radicals, and initial reaction of oxygen molecules with MBZ). In light of germane experimental observations, the formulated kinetic model herein offers an insight into bromine speciation, conversion profile of MBZ, and formation of higher brominated congeners of benzene and phenol. For instance, the model satisfactorily accounts for the yields of dibromophenols from oxidation of a 2-bromophenol (2-MBP) molecule, in reference to analogous experimental measurements. From an environmental perspective, the model reflects the accumulation of appreciable loads of 2-bromophenoxy radicals at intermediate temperatures (i.e., a bromine-containing environmental persistent free radical, EPFR) from combustion of MBZ and 2-MBP molecules. Acquired mechanistic/kinetic parameters shall be useful in comprehending the complex bromine transformation chemistry in real scenarios, most notably those prevailing in thermal recycling of brominated flame retardants (BFRs).


Assuntos
Dioxinas , Retardadores de Chama , Bromo , Fenóis , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...